
Contents lists available at ScienceDirect

Rangeland Ecology & Management 73 (2020) 171e180
Rangeland Ecology & Management

journal homepage: http: / /www.elsevier .com/locate/rama
Modeling Invasive Annual Grass Abundance in the Cold Desert
Ecoregions of the Interior Western United States*

John C. Hak*, Patrick J. Comer
NatureServe, Boulder, CO 80301, USA
a r t i c l e i n f o

Article history:
Received 28 March 2019
Received in revised form
19 August 2019
Accepted 11 September 2019

Key Words:
ecological condition
ecological integrity
human footprint
human modification
invasive annual grass
weeds
* This work was supported by the Bureau of Land
* Correspondence: John C. Hak, NatureServe, 1680 3

80301, USA. Tel.: 703-797-4802.
E-mail address: jonchak@gmail.com (J.C. Hak).

https://doi.org/10.1016/j.rama.2019.09.003
1550-7424/© 2019 The Society for Range Managemen
a b s t r a c t

Invasive annual grasses, primarily Bromus tectorum, are a severe risk to native vegetation of the inter-
mountain West. Once established, annual grasses alter natural fire regimes and outcompete natives until,
in some places, they become the overwhelming dominant. We developed a regional spatial model
encompassing eight ecoregions to indicate the relative abundance of invasive annual grass at five levels
of canopy cover. We used field sample data representing invasive annual grass abundance to build and
calibrate the model. Explanatory variables, represented as map inputs, included image indices, climate,
landform, soil, and human-induced surface disturbance. As a novel modeling approach, we built multiple
models based on classes of invasive annual grass cover abundance were developed individually and then
combined into a final 90-m pixel resolution model that indicates locations relative to invasive annual
grass abundance into classes of < 5%, 5�15%, 16�25%, 26�45%, and > 45% cover. Each component model
was validated using held-out sample data, and relative accuracy was 86%, 74%, 62%, 62%, and 60%,
respectively, with an overall kappa of 0.773. The Columbia Plateau, Northern Basin and Range, and Snake
River Plain ecoregions appear to have the greatest overall proportions (48�62%) mapped within at least
one of the invasive cover categories. Overlay of the resulting model with major vegetation types indi-
cated > 50 major vegetation types that are affected by current distribution of annual grasses and are at
risk of expansion. Among these, Intermountain Basins, Big Sagebrush Steppe, and Columbia Plateau
Steppe and Grassland each consistently scored high for invasive risk where they occur. Spatial models of
this type should assist with rangeland restoration and for decisions involving placement of infrastruc-
ture, vegetation treatments where further surface disturbance could trigger additional cheatgrass
expansion. Options exist for extending this model, using climate projections over upcoming decades, to
indicate areas of increasing risk for invasion.

© 2019 The Society for Range Management. Published by Elsevier Inc. All rights reserved.
Introduction

Among themost severe threats to native ecosystems throughout
the western United States is the invasive spread of exotic annual
grasses, including cheatgrass (Bromus tectorum), medusahead
(Taenaitherum caout-medae), and others (Knapp 1996). Cheatgrass
in North America occurs across much of the United States, Canada,
Greenland, and Northern Mexico (Mosely et al. 1999). Primarily a
roadside weed in the eastern United States, cheatgrass is most
prominent west of the Rocky Mountains to Cascade Range and
north from Nevada and Utah to British Columbia. Flourishing since
its introduction in themid-1800swith landscape disturbances from
Management (L13AC00243).
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infrastructure and overgrazing, cheatgrass and other invasive
annual grasses have increased in both presence and abundance
(Billings 1990). Throughout the six western states at greatest risk
from cheatgrass invasion, Nevada is most affected, including
extensive areas of complete cheatgrass dominance (Pellant et al.
1994).

This Eurasian annual grass exploits apparently unoccupied
niche space in the Great Basin and is a particularly effective
competitor with native bunchgrasses and forbs (Arredondo et al.
1998; Davis et al. 2000). Typically, the seeds germinate in the fall,
continue root growth throughout all but the coldest parts of winter,
and show aboveground shoots in late winter. They have a higher
relative growth rate compared with many native plant species This
strategy gives cheatgrass multiple advantages over native species
but primarily in its aggressive competition for early growing season
moisture. Interactions between fire, grazing intensity, and biolog-
ical soil crusts appear to affect relative resistance of sites to
cheatgrass invasion (Condon and Pyke 2018).
hts reserved.
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Cheatgrass tends to bemost abundant between 600 and 1800m
elevations. While most widespread in cold desert communities
dominated by subspecies of big sagebrush (Artemisia tridentata),
cheatgrass is present throughout many Intermountain Basin and
foothill plant communities. These can include lands supporting
mixed salt desert scrub in basins (West 1988) up through pinyon
and juniper� and even ponderosa pine�dominated communities
(Young 2000).

While present under a variety of climatic conditions, cheatgrass
exploits conditions favorable to species from Mediterranean cli-
mates with high winter rainfall followed by summer drought.
Generally, it is most prevalent in regions receiving from 300 mm to
560 mm of late winter precipitation (Pyke and Novak 1994). In
some drier landscapes in Nevada, such as those supporting black
sagebrush, cheatgrass was present in periods with substantial
spring moisture (Young and Palmquist 1992). In periods of severe
drought and where site productivity is low, cheatgrass still pro-
duces enough seeds to contribute to future recruitment (Mack and
Pyke 1983).

Cheatgrass tends to occur on southern and western aspects,
rather than the cooler/wetter northern exposures (Goodrich
1999; Goodrich and Rooks 1999). Most commonly associated
with deep sandy to loamy soils, cheatgrass is not limited to these
soils (Sheley and Petroff 1999). It can be competitive in low-
fertility soils (Doescher et al. 1986; Link et al. 1994; Young
2000) or compete well on soils with higher nitrogen availability
(Lowe et al 1992; Dakheel et al. 1993; Young and Allen 1997).
Chambers et al. (2007) found that in the Great Basin, growing
season temperature limits cheatgrass distribution at higher ele-
vations and soil moisture is a primary limitation at lower eleva-
tions. Soil moisture and nitrate availability increase following
vegetation removal, assisting with invasibility. Variability in soil
moisture and nitrate availability, which tends to be higher at
lower elevations, also contributes to cheatgrass invasibility. But
where native perennial graminoid species are abundant (i.e., in
high-quality vegetation condition and generally at higher eleva-
tion locations), cheatgrass invasibility is more limited (Chambers
et al. 2007).

Some have attributed rapid expansion of cheatgrass to surface
disturbance from overgrazing livestock (D’Antonio et al. 1999;
Zouhar et al. 2008; Young and Clements 2009) and specifically to
destruction of biological soil crust (Reisner et al. 2013). But once
established, it also introduces fine fuel that alters natural fire re-
gimes. Fire intervals between 20 and 50 yr are characteristic in
many sagebrush communities (Peters and Bunting 1994). With
increasing fire frequency, species like big sagebrush and less fire-
tolerant bunchgrasses and forbs decrease in cover. Cheatgrass
cover can then increase and accumulate more fine fuel to further
increase fire frequency until it becomes overwhelmingly dominant
(Melgoza et al. 1990; Brooks et al. 2004).

Bradley and Mustard (2006) completed spatial analysis across
the intermountain west to track invasive plant species expansion
between 1973 and 2001 and explore relationships of landscape
variables including geophysical characteristics and surface distur-
bance. Since then, several map-based analyses using 250-m pixel
eMODIS data (Jenkerson et al. 2010) have assessed effects of inva-
sive grasses on regional fire activity (Balch et al. 2013), estimated
change in cheatgrass cover (Boyte et al. 2016), and explored po-
tential risk and opportunities linked to climate change (Bradley
et al. 2016). Boyte et al. (2016) limited their modeling extent to
the northern Great Basins ecoregion. They used a three-stage
modeling approach aimed at documenting 1) “actual” cheatgrass
abundance, based on image indices and biophysical inputs; 2)
“expected” abundance, based on observed climate inputs; and 3)
predicted distributions into the mid- and late-21st century based
on projected climate inputs.
Models of spatial resolution finer than the eMODIS 250 m are
desired for assessment and planning by land managers, and higher
resolution products have been developed for these purposes
(Comer et al. 2013). For example, aiming to produce maps of higher
spatial resolution and accuracy, Peterson (2005) used multi-
temporal satellite imagery and field training data to develop a
continuous surface prediction of cheatgrass percent cover for a
large portion of Nevada. The following decade has produced mul-
tiple iterations with evolving methodology to refine the distribu-
tion of invasive annual grass. Each iteration primarily represents an
analysis of spectral information (DOD 2006; Xian et al. 2015; Jones
et al. 2018). However, recent models do not use a complete repre-
sentation ecological potential denoted by biophysical data (Comer
et al 2013; Downs et al. 2016), comprehensive climate influences
(Bradley &Mustard 2006; Comer et al. 2013; Downs et al. 2016), are
not invasive annual grass specific but rather focus on annual forbs
and grasses combined (Xian et al. 2015; Jones et al. 2018), many of
which are native to western ecosystems and should not be mapped
as invasive annual grasses.

Given this accumulating knowledge about cheatgrass occur-
rence and behavior, its substantial impact on natural resources, and
advances in spatial modeling for use my land managers, we aimed
to develop a 90-m pixel-resolution spatial model for the cold desert
region of the intermountain west to provide insights into its pres-
ence, abundance, and risk of expansion of cheatgrass and other
invasive annual grasses. The overall goal of this analysis was to use
readily available spatial data to represent the full ecological po-
tential inwhich disturbance, biophysical, spectral, and climatic data
may be easily updated and allow for rapid future updates.

Methods

Study Area

We selected a set of ecoregions (Wiken et al. 2011) used by the
Bureau of Land Management (BLM) for rapid ecoregional assess-
ments that are known to encompass primary infestations of
cheatgrass and other cold temperate invasive annual grasses. These
included the Central Basin and Range, Colorado Plateaus, Wyoming
Basin, Northern Basin and Range, Snake River Plain, Eastern Cas-
cades Slopes and Foothills, Columbia Plateau, and Blue Mountains,
or a total area of 982 515 km.2 This vast region, overlapping with
what is sometimes referred to as the “sagebrush sea” (Davis et al.
2011), is overwhelmingly dominated by various forms of sage-
brush shrubland and steppe, especially at elevations below 2 500
m. Large proportions of the states of Nevada, Utah, Wyoming,
Oregon, and lesser proportions of Idaho, Washington, Colorado,
California, Arizona, New Mexico, and Montana are included in this
study area. Basin and range physiography is best developed in the
Central Basin and Range ecoregion, with roughly parallel mountain
ranges separated by (often hydrologically closed) basins (Eaton
1982). This characterizes landscapes of the northern Great Basin
and Columbia Plateau. Farther east, the Wyoming Basins are much
larger and surrounded by high mountain ranges. In all these ecor-
egions, lower basin slopes, rolling plateaus, and some basin bot-
toms encompass geophysical settings that support invasive annual
grasses. The Colorado Plateau geologically represents Plateaus
upwarped crust and subsequently downcut formations of table and
canyonland (Fenneman 1931) supports less proportional area of
sagebrush communities but does include ecologically similar xeric
shrubland and pinyon-juniper woodland.

Dependent Variables

Providing dependent variables, precise locations with both
presence and percent cover of invasive annual grasses are needed



Table 1
Sample count, plus minimum, maximum, and average invasive annual grass cover, per cover category.

Invasive annual grass cover category Sample/Validate count Minimum cover (%) Maximum cover (%) Average cover (%)

1dTrace to 5% 14 441/1 442 0.01 4.92 1.62
2d5�15% 7 818/780 5.00 14.83 7.98
3d15�25% 3 336/328 15.00 24.90 18.42
4d25�45% 2 585/257 25.00 44.87 32.69
5d> 45% 1 559/151 45.00 100 64.04
Grand total 29 739/2 958
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to train spatial models. While no one source of data on exotic
annual grass presence and abundance exists for the entire region,
there are several well-documented field survey datasets. The
LANDFIRE Program (Rollins 2009) maintains a LANDFIRE reference
database (LFRDB) that includes thousands of samples standardized
for use in their spatial modeling. The publicly available LFRDB in-
cludes vegetation and fuel data from georeferenced sampling units
nationwide. The data were amassed from existing information re-
sources such as the BLM’s AIM plots, US Forest Service and NRCS
(NRI plots) vegetation programs, USGS National Gap Analysis Pro-
gram, NPS Inventory and Monitoring (I&M) efforts, Natural Heri-
tage Program inventories, and other contributing field researchers.
Data fields in the database include estimates of canopy cover and
height per plant taxon, occurrence of exotic plants, biomass esti-
mates of downed woody material, percent cover and height of
shrub and herb layers, and canopy base height estimates.

A second source of sample data was the Southwest Exotic
Mapping Program (SWEMP) (Thomas and Guertin 2017). Initiated
in 2007 as a collaborative effort between the US Geological Survey
and federal, tribal, state, county, and nongovernmental organiza-
tion (NGO) partners in the southwest. This project compiled and
distributed regional data on the occurrence of non-native invasive
plants. The database represents documented locations of non-
native invasive plant infestations within Arizona and New
Mexico, as well as adjacent portions of California, Colorado, Nevada,
and Utah. These data, collected from 1911 to 2006, represent the
field observations along with selected specimen data from
herbaria.

Training and validation data were acquired from the July 2016
update of the LANDFIRE publicly available sample points. Once
combined, SWEMP samples were removed if they occurred within
100 m of LANDFIRE samples to avoid duplication. Within the tar-
geted ecoregions, a total of 29 739 samples were identified as
having an invasive annual grass component within the overall
species composition of the sample site (Table 1). A total of 31
distinct invasive species were identified within the sample sites as
having > 100 records each, of which 51% of the samples recorded
the presence of cheatgrass (Bromus tectorum). Nearly all sample
points recorded a single species of annual grass present, but some
contained additional species. All samples were grouped into one of
five absolute cover categories: < 5%, 5�15%, 16�25%, 26�45% and
> 45% cover (Jensen et al. 1994; Gokhale and Weber 2005; Sander
and Weber 2005; Kagan et al. 2006; TNC 2006; Comer et al. 2013).
Categories were refined from Zouhar et al. 2008 (see table 15-3)
using distributions from Braun-Blanquet 1965 and Jensen et al.
1993 (EcoData) and combining cover classes to maximize sample
size per category. Most samples were represented in the Category 1
and Category 2 cover percentages (see Table 1 and Fig. 1). All
samples were gathered between yr 1990 and 2015.

Independent Variables

Independent variables used in the analysis consist of both
continuous and categorical feature types but occur as map layers
extending across the multiecoregion mapping area. Categorical
feature types were further processed to continuous features by
either distance to (fire boundary, hydric soils, streams) or density
measures (road classes). These map inputs varied in their native
spatial resolution from 800-m down to 10-m resolutions and were
each rescaled to a 90-m resolution for modeling (Table 2).

The enhanced Moderate Resolution Imaging Spectroradi-
ometer (eMODIS) satellite provides a 250-m pixel surface with
normalized difference vegetation index (NDVI) as a measure of
vegetation productivity. Given knowledge of south-to-north pat-
terns in seasonal green-up of annual grasses, we used monthly
NDVI averages from the months of February, March, and May of
2014.

Nineteen bioclimatic predictor variables, including temperature
and precipitation variables for the conterminous USA (O’Donnell
and Ignizio 2012), were used to represent climate drivers of inva-
sive annual grass niche space. Our source climate data were
comosed of 800-m resolution gridded surfaces representing
monthly averages from 1948 through 2014. We obtained minimum
and maximum temperature data from TopoWx (Oyler et al. 2015),
which uses a homogenization algorithm to overcome the noise and
biases that emerge when gridded climate datasets derived from
inconsistent weather station records are used to measure temporal
trends. Since precipitation data are not available from TopoWx, we
sourced them from the PRISM LT71 dataset (Daly et al. 2008). While
PRISM does not remove the artifacts of nonclimatic trends in the
same manner as TopoWx, LT71 does use a more temporally
consistent set of weather stations than other PRISM products and
precipitation is subject to fewer trend quality concerns than
temperature.

Since both image indices and climate data sets have native
resolutions of 250 m and 800 m, respectively, we downscaled each
to 90-m grids using cubic convolution resampling. Although
resample of the native resolution of a raster dataset is typically
discouraged, multiple inputs in the model are derived from much
finer datasets and scale up to 90 m. The downscaling of the coarser
resolution data was determined to be acceptable as current
research into the effects of resolution change has little to no effect
on the absolute error and the rescaled data can be reasonably
assumed to have equal uncertainty to the native resolution (Pogson
& Smith 2015)

Other geophysical variables for modeling included elevation and
slopedall as continuous variablesd derived from the 10-m digital
elevation model (USGS 2015 NED). This surface was upscaled to 90
m using cubic convolution resampling. Predictors of soil moisture
were developed using variables representing distance (in meters)
from hydric soils derived from the digital soil survey SSURGO (Soil
Survey Staff, accessed 2014) primarily, as well as for distance from
perennial and intermittent streams derived using NHDPlus (US EPA
and USGS 2012).

Surface disturbances used in modeling were represented in
several forms. Large wildfire perimeters from 1990 to 2015 were
acquired from the GeoMAC database (Walters et al. 2011), and
distance from each of these events (in meter) was calculated. Sur-
face disturbances from roads were represented as density (linear
km/km2) calculated by three road classes defined as local (includes
county and small paved, dirt), primary, and secondary (major
highways) at 90-m resolution.



Figure 1. Invasive annual grass samples by canopy cover category across cold desert ecoregions (6.2.8 ¼ Eastern Cascades Slopes and Foothills, 6.2.9 ¼ Blue Mountains, 10.1.2 ¼
Columbia Plateau, 10.1.3 ¼ Northern Basin and Range, 10.1.4 ¼ Wyoming Basin, 10.1.5 ¼ Central Basin and Range, 10.1.6 ¼ Colorado Plateaus, 10.1.8 ¼ Snake River Plain).
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We addressed issues of covariance and identify variable
importance, we summarized variable contribution using a jack-
knife method in which random forest models were generated
for each unique combination of independent variables and
ranked on the basis of the area under the curve (AUC) value
Table 2
Probability of occurrence thresholds were defined as the values where sensitivity and sp

Cover category Threshold Model standa

Trace to 5% cover 0.4275 0.034581
5% to 15% cover 0.4425 0.040087
15% to 25% cover 0.4635 0.01203
25% to 45% cover 0.435 0.038442
> 45% cover 0.4815 0.013134
Kappa
95% CI

AUC, area under the curve; CI, confidence interval.
onto individual models to identify which independent model
inputs were most frequently used in each model and to better
understand their relative contribution to model performance.
The variable evaluation was competed in two steps. First, the
climate variables were reduced to those that had at least 1
ecificity are equal.

rd Annual grass (AUC) Percent correct

0.9326 85.77%
0.9391 73.87%
0.9369 61.56%
0.9462 62.00%
0.9595 60.08%
0.773
0.02014



Table 3
Relative contributions of 27 independent variables to model performance, ordered by the count sum score for each variable across all five component models that have a
rank � 10.

Independent variables Trace to 5%
cover

5% to 15%
Cover

15% to 25%
Cover

25% to 45%
Cover

> 45%
Cover

Summed
across models

Local road density 1 1 3 2 9 5
Solar radiation 5 2 2 1 5 5
Bio18dprecipitation of warmest quarter 6 5 8 8 10 5
Distance to fire boundary 8 8 6 10 7 5
Distance to hydric soil 3 6 4 5 NA 4
NDVIdMay 25 10 4 10 6 1 4
Elevation NA 10 6 7 8 4
Bio10dmean temperature of warmest quarter NA 7 9 NA 2 3
Distance to intermittent streams NA 3 1 4 NA 3
Bio12dannual precipitation NA 9 4 9 NA 3
Bio16dprecipitation of wettest quarter NA NA 8 3 NA 2
Bio08dmean temperature of wettest quarter NA NA NA NA 3 1
Bio19dprecipitation of coldest quarter 4 NA NA NA NA 1
Bio05dmax temperature of warmest month 2 NA NA NA NA 1
NDVIdMar06 NA NA NA NA 6 1
NDVIdFeb10 7 NA NA NA NA 1
Latitude NA NA NA NA 4 5
Bio11dmean temperature of coldest quarter 9 NA NA NA NA 1
NDVIdMay09 NA NA NA NA NA 1
Secondary road density NA NA 10 NA NA 1
Bio13dprecipitation of wettest month NA NA NA NA NA 0
Bio15dprecipitation seasonality (coefficient of variation) NA NA NA NA NA 0
Biio03disothermality (P2/P7) (* 100) NA NA NA NA NA 0
Bio09dmean temperature of driest quarter NA NA NA NA NA 0
NDVIdMar22 NA NA NA NA NA 0
Primary road density NA NA NA NA NA 0
Slope NA NA NA NA NA 0
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occurrence ranked in the top 10, reducing the 19 climate vari-
ables to 12 climate variables (Table 3). The final 12 climate
variables were then combined with the biophysical and NDVI
independent variables, and the variable evaluation was run again
to identify the top 10 independent variables for final categorical
models. Table 4 summarizes relative model input contribution to
each model from the 27 independent variables with statistically
significant influence. The table is sorted using the count of rank
� 10 of variable contribution across all five cover category
models. Blank (NA) spaces indicate where a variable had no
statistically significant influence on model performance for one
of the component models.

Model Development and Validation

This model is unique as our approach is to generate distinct
models for each of the five cover categories of invasive annual
grasses (< 5%, 5�15%, 16�25%, 26�45%, and > 45% cover) and as a
subsequent step, threshold eachmodel to a binary (see Table 3) and
merge the individual models into a composite map product. Similar
to Ullerud et al. 2016, we forgo developing the composite model as
a single classification with five independent values as derived with
traditional vegetation map products like National Gap Analysis (see
5), we chose to address each category as a separate interim model
Table 4
Total area and proportional area falling within each category of invasive annual grass co

Type by ecoregion Total area (km2) (No invasive) Cat. 1 (trace)

Blue Mountains 70 912 83% 6%
Central Basin and Range 309 945 79% 8%
Colorado Plateaus 134 930 91% 8%
Columbia Plateau 83 923 35% 8%
E. Cascades Slopes and Foothills 56 175 72% 10%
Northern Basin and Range 142 200 45% 21%
Snake River Plain 53 626 47% 8%
Wyoming Basin 132 683 79% 20%
to maintain better parsimony in sample size between categories
and allow more flexibility in defining each category occurrence. In
addition, the spatial resolution of the map, while fine scale for
regional/national products, allows substantial variance of percent
cover within each pixel and separate category models allow each
pixel to be evaluated for the highest probability of each model. For
instance, the model for > 45% cover had a value of 0.4815 (see
Table 2) applied as a threshold to make a binary distribution. A
separate validation process was found to be necessary as the AUC
scores for each separate invasive grass category is a representation
of the overall continuous model performance and is not repre-
sentative of the final categorical model, which is defined by a
threshold (see Table 3) making it a binary rather than continuous
surface.

The USGS software package for assisted habitat modeling
(SAHM) includes several analytical algorithms for spatial
modeling using classification and regression trees and produc-
tion of map outputs. The RandomForest tree model (Breiman
2001), has proven to provide robust model outputs in a wide
variety of circumstances (Leaw and Weiner 2002). These soft-
ware tools generated multiple model outputs for comparing
relative performance. We utilized randomForest utilizing our
labeled sample data (by each invasive grass cover category) as
dependent variables in supervised learning. randomForest selects
ver, organized by Commission on Environmental Cooperation ecoregion.

Cat. 2 (> 5�15%) Cat. 3 (> 15�25%) Cat. 4 (> 25�45%) Cat. 5 (> 45%)

7% < 1% 4% < 1%
6% 1% 4% 2%
1% < 1% < 1% < 1%
10% 1% 28% 18%
12% 1% 5%
16% 4% 10% 4%
9% 3% 20% 13%
1% < 1% < 1% < 1%
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the best binary splits from a random selection of predictors and
then recombining those to generate a final model (Breiman
2001).

Using the RandomForest tree model, 10 model folds were
generated with random withholding of 10% of samples for model
validation. The average AUC from the receiver operating charac-
teristics (ROC) plots were used to determine the model validity.
These curves compare the true-positive (or sensitivity) rate with
the false-positive rate (or specificity). The best model was identified
by highest AUC score of the 10 folds.

For each model, we established a probability threshold where
sensitivity equaled specificity to define the occurrence of the cover
category. This value in all model categories was the most restrictive
threshold value (see Table 2).

Each component model was validated using 10% of all sample
data (2 740 samples across all five models, x for category 1, y for
category 2, etc.) held aside from model development. The accuracy
estimates for models from categories 1�5 was 85.77%, 73.87%,
61.56%, 62.00%, and 60.08%, respectively. An overall kappa statistic
was calculated as 0.773.

We summarized the variable contribution using a jackknife
method in which random forest models were generated for each
unique combination of independent variables and ranked on the
basis of the AUC value onto individual models to identify which
independent model inputs were most frequently used in each
model and to better understand their relative contribution to
model performance. Table 3 summarizes relative model input
contribution to eachmodel from the 27 independent variables with
statistically significant influence. The table is sorted using the count
of rank � 10 of variable contribution across all five cover category
models. Blank spaces indicate where a variable had no statistically
significant influence on model performance for one of the
component models.

Local road density, followed by solar radiation, distance from
recent fire, precipitation of warmest quarter, and distance from
hydric soil make up the top five variables, in terms of relative model
contribution across all five models. These results follow general
patterns documented in the literature, where local road density and
recent fire events are considered among themost potent vectors for
cheatgrass spread. Solar radiation is likely correlated with distance
to fire with hot, flat, and upsloping topography enabling rapid and
extensivewildfire spread. Early spring green-up, as reflected inMay
NDVI, was also presumed to be a variable likely to appear high in its
predictive power. NDVI measured in May, elevation, mean tem-
perature of the warmest quarter, distance to intermittent streams,
and annual precipitation round out the top 10 variables from this
scoring.

NDVI measures from late May in the northern latitudes where
the highest densities or annual grasses are document while March
and February were followed by those in early May in relative
importance. It may be that the February�May period covers the
south-to-north green-up pattern for this entire region, and that
explains this result.

Climate variables explain a moderate amount of the model
variance for annual grass coverage. Precipitation in the warmest
quarter and mean temperature of the warmest quarter were the
strongest climate drivers. Variables such as temperature of the
driest quarter and precipitation of the wettest month scored lowest
overall of the climate variables with some statistical significance.

Finally, the component models were combined to produce a
composite map from five distinct maps, each indicating areas
predicted to support invasive annual grasses at a given level of
percent cover. At a pixel level, the highest predicted cover value
supersedes the values from models of lower value model. Areas of
current mapped agriculture were eliminated from the composite
model, but no further masking was applied to areas above the
typical elevation zone for annual grass.
Results

The final composite model comprises each individual model
layered in order of lowest percent coverage to highest percent
coverage with each increasing percent cover layer superseding all
underlying data values (Fig. 2). This composite model therefore
indicates where invasive annual grasses occur today at one of the
five levels of canopy cover. Table 4 summarizes findings of the
model for the targeted ecoregions. Overall, 3% of the target ecor-
egions are predicted to be infested with invasive annual grasses
with cover values above 45%, 5% of the area with cover of 25�45%,
1% of the area with cover of 15�25%, 7% of the area with cover of
5�15%, 11% of the area with cover of < 1�5% or trace amounts (see
Table 4). The Columbia Plateau (62%), Northern Basin and Range
(53%), and Snake River Plain (48%) ecoregions appear to have the
greatest overall proportions mapped within at least one of the
invasive cover categories. Proportionally, the Columbia Plateau
(18%) and Snake River Plain (13%) have themost areamapped in the
most severely infested cover category 5 (> 45%). The Columbia
Plateau (28%) and Snake River Plain (20%) also have the highest
proportions mapped in the severely infested cover category 4
(25�45%). Interestingly, relatively low proportions were mapped in
moderate cover category 3 (15�25%) across all target ecoregions,
with the Northern Basin and Range (4%) and Central Basin and
Range (1%) being the highest. Category 2 (5�15%) was propor-
tionally highest in the Northern Basin and Range (16%), East Cas-
cades Slopes and Foothills (12%), and Columbia Plateau (7%),
respectively. The lowest level of mapped invasive cover in Category
1 (trace�5%) was proportionally highest in the Northern Basin and
Range (21%), Wyoming Basin (20%), East Cascades Slopes and
Foothills (10%), Central Basin and Range (8%), Colorado Plateau
(8%), Columbia Plateau (8%), Snake River Plain (8%), and Blue
Mountains (6%), respectively. Figure 1 indicates how those pat-
terns vary within each ecoregion. For example, in the Central
Basin and Range ecoregion, the overall proportion (20%) of the
ecoregion affected is lower than some other ecoregions, the
northwestern third of that vast ecoregion is mapped with a
preponderance of cover categories 4 and 5. Similarly, the Blue
Mountains include lower-elevation cold desert areas where
invasive risk is most concentrated.

The composite model with invasive cover categories 1�5 was
overlainwith existing vegetation distributions from GAP/LANDFIRE
(2011) existing vegetation layer to summarize proportional area of
major types within each ecoregion (NOTE: type descriptions are
available at www.natureserve.org). Appendix 1 (available online at
https://doi.org/10.1016/j.rama.2019.09.003) includes a summary
for the most prevalent natural vegetation types in which at least
some proportion of their areal extent is mapped within one of the
invasive cover categories.

Following from mapped estimates of entire ecoregions, vege-
tation types within the Columbia Plateau, Northern Basin and
Range, and Snake River Plain ecoregions include types with > 10%
in the most severe cover category (> 45%). Examples include
Intermountain Basins Big Sagebrush Shrubland (37%), Columbia
Basin Palouse Prairie (28%), and Intermountain Basins Big Sage-
brush Steppe (19%) within the Columbia Plateau ecoregion. In the
Northern Basin and Range ecoregion, both Intermountain Basins
Mixed Salt Desert Scrub (11%) and Columbia Plateau Ash and Tuff
Badland (46%) scored high in this most severe category. On the
Snake River Plain, Intermountain Basins Volcanic Rock and Cinder
Land (15%), Intermountain Basins Mixed Salt Desert Scrub (12%),

http://www.natureserve.org
https://doi.org/10.1016/j.rama.2019.09.003


Figure 2. Invasive annual grass presence by canopy cover category across cold desert ecoregions (6.2.8 ¼ Eastern Cascades Slopes and Foothills, 6.2.9 ¼ Blue Mountains, 10.1.2 ¼
Columbia Plateau, 10.1.3 ¼ Northern Basin and Range, 10.1.4 ¼ Wyoming Basin, 10.1.5 ¼ Central Basin and Range, 10.1.6 ¼ Colorado Plateaus, 10.1.8 ¼ Snake River Plain).
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Intermountain Basins Big Sagebrush Steppe (11%) also scored high
(see Appendix 1).

Discussion

Vegetation types that scored > 10% in three or more cover cat-
egories may have the greatest impact from invasive grass effects.
The impacts may vary across the range of the type, so dis-
tinguishing patterns by type and ecoregion assists with identifying
these patterns. For example, on the Columbia Plateau, the Columbia
Plateau Steppe and Grassland was mapped with > 10% cover in four
of five invasive cover categories, as were the Intermountain Basins
Mixed Salt Desert Scrub and Intermountain Basins Greasewood
Flat, as they occur in the Northern Basin and Range ecoregion.
However, from a rangewide perspective, as has been previously
documented in the literature, Intermountain Basins, Big Sagebrush
Steppe, and Columbia Plateau Steppe and Grassland each score high
for invasive risk in at least four of the eight ecoregions where they
occur.

Model Application to At-Risk Status Assessment

At-risk status assessments for biodiversity take many different
forms. NatureServe methods factor together trends in the distri-
bution, quality, and threat associated with species and natural
communities to determine their relative status (Master et al. 2012;
Comer et al. 2019). These methods parallel long-standing ap-
proaches for the International Union for the Conservation of Nature
(IUCN) red listing of species (Mace et al. 2008) and, more recently,
for ecosystems (Keith et al. 2013). For the IUCN Red List of Eco-
systems, ameasurement of the proportional rangewide extent of an
ecosystem type that, within set timeframes, has been impacted by
environmental degradation or disruption of biotic processes,
gauges the relative risk of ecological collapse across the distribution
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of the type (Bland et al. 2016). While environmental degradation
includes effects of physical alterations to geophysical settings or
effects of dynamic process alteration like fire or flooding regime,
disruption of biotic processes may encompass many common ef-
fects of habitat fragmentation, such as disruption of species
dispersal and native species displacement by invasive species.
These effects may be inferred from spatial overlay of this type of
invasive annual grass model. The D3 subcriterion in the IUCN
approach suggests classifying disruption of biotic processes at three
levels of severity expressed as proportional area affected by set
percentages (> 50%,> 70%, and> 90%) ‘severity’ if applied to change
since 1750) (Bland et al. 2016). Here we could use values that
predicted for 15�25% cover, 25�45% cover, and > 45% cover to
approximate 50%, 70%, and 90% severitymeasures, respectively. The
results from Appendix 1 could be used to establish relative at-risk
scores for each vegetation type.
Model Applicability to Forecasting

This model suggests several avenues to forecast relative risks for
invasive grass presence and abundance over upcoming years or
decades. First, climate variables identified here are included in
common climate projections under a range of anticipated green-
house gas scenarios and represented with 1-km2 data from, for
example, Climate of North America (Wang et al. 2016). Therefore,
the same modeling methods deployed here could substitute pro-
jected climate data as independent variables to indicate overall
shifts in suitable climate for invasive grasses. Second, given the
critical importance of vegetation disturbance from wildfire for
predicting invasive grass spread, tools for spatial simulation of
wildfire spread could be coupled with climate projections to pro-
vide increasingly precise predictions of risk for invasive grass
spread.
Model PerformancedData Limitations

Although overall model performance was acceptable, limita-
tions arise from each of the model inputs presented here. Ideally,
we would have a more robust, spatially balanced set of sample
plots reflecting invasive grass presence and abundance. Due to
the vast area included here, all available data meeting minimum
content requirements had to be used. Agency investments in
systematic vegetation sampling, such as those provided by the
BLM’s AIM Program, are most welcome. Ongoing commitment to
field data collection of this nature will be essential into the
future.

Other data sets, perhaps most especially for local roads, are also
a known limitation. On the basis of experience with the BLM
(Comer et al. 2013), it is understood that in many instances, local
roads that have been closed for access remain, in some form, on the
ground as available spatial data sets. This could lead to distorted
model outputs in some areas. Similarly, the location and relative
intensity of wildfire, being so important to predicting invasive grass
spread, is represented in varying (albeit improving) quality across
the region.

Much additional work should be done with available climate
data to more precisely focus on variables with greatest predictive
power for this sort of modeling. Derivatives of the 19 bioclimate
variables used here, especially those focused on temperature and
moisture at the soil surface, would likely improve our model. There
might be increasing opportunities for integration of these down-
scaled climate data along gradients described by digital elevation
models.
With these data limitations noted, we suggest that a practical
minimum mapping area for application of this model should be
approximately > 5 ha. That is, one should not presume that values
represented by individual 90-m pixels are accurate. Instead, look to
aggregations of 10s to 100s of adjacent pixels to approximate the
appropriate value for any given area.
Implications

Land use planners andmanagers urgently need decision support
regarding rangeland restoration and the placement of surface-
disturbing vegetation treatments and infrastructure. They need to
be able to reliably predict not only the presence but relative
abundance (e.g., % cover) of invasive cheatgrass and other invasive
plant species in any given location. Evaluations of model perfor-
mance indicated the strong influence of surface disturbance from
local roads and recent wildfire as predictors of invasive annual
grass spread throughout these cold desert ecoregions. This has
substantial implications for rangeland management because many
management activities can result in surface disturbance (e.g., large
fire breaks) while attempting to limit potential for wildfire spread.
The increasing availabilities of spatial models such as the one
presented here can bring additional information for planning these
activities to help reduce inherent risks.

Novel methods deployed in this effort also provide options for
implementing spatial forecasts of invasive plant expansion under
climate and land use conditions of upcoming decades. Enhanced
spatial models of this nature could have substantial impact on land
management decisions across the Intermountain West over up-
coming decades.
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